
Opportunities for Ports in the

Green Fuels Transition and Decarbonization Future

Agenda

Introduction

This is COWI

Known for design of major **Marine Infrastructure,** Offshore Wind, Bridges & Tunnels

Approx. **7,000** employees worldwide **12** offices across

North America

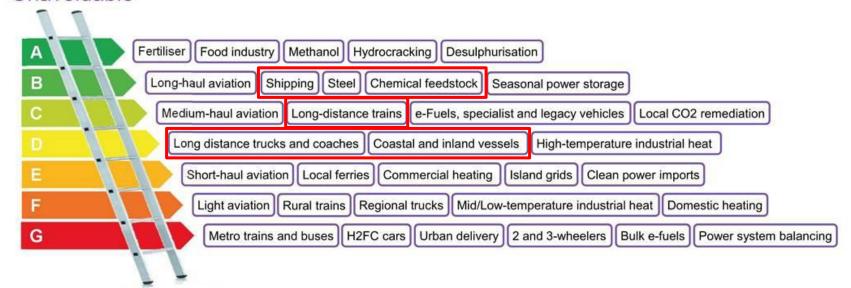
Global leaders in
Renewable Energy,
Hydrogen, PtX and
CCUS

Net turnover: 1B USD **90+** years of history

Why e-Fuels? Renewable Electricity 100 kWh **Battery Pathway** E-Fuels Pathway **Grid Transmission AC-DC Conversion** (95%) → 95 kWh (90%) → 90 kWh AC-DC Conversion & Electrolysis **Battery Charging Hydrogen Production** (85%) + 77 kWh (65%) → 62 kWh Electric Vehicle with e-Fuels: Diesel, Jet Fuel, Regenerative Braking ~70 kWh 15-20 kWh 5 190PPORTUNITIES FOR PORTS IN GREEN FUELS MAY 2022 Therefore, e-Fuels are focused on

Batteries are too heavy for large & long-distance transport

6,000 miles: 60 kt cargo, 55 kt battery 2,000 miles: 60 kt cargo, 17 kt battery



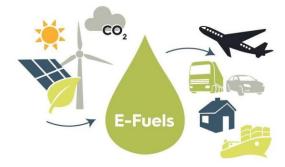
6,000 miles: 600 t cargo, 7,400 t battery 1,000 miles: 300 t cargo, 300 t battery

Requires Extreme

E-Fuels Target Sectors

Unavoidable

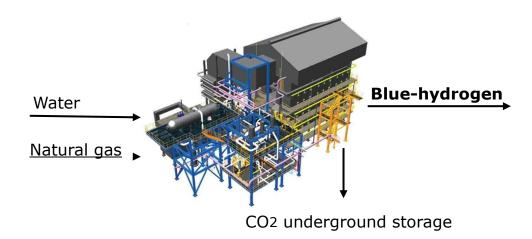
Uncompetitive


- Liebreich Associates

Definitions

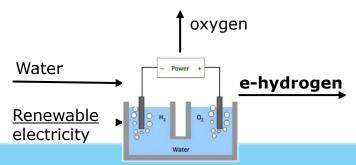
- > Power-to-X (PtX): Transforming renewable electrons (electricity) to molecules
- > e-Hydrogen: Main PtX product, produced from water electrolysis process
- > **e-Fuels:** e-hydrogen from water electrolysis and all fuels derived from e-hydrogen, nitrogen from air (79% of air), and biogenic CO₂
- > e-Fuels Types: conventional-like fuels like e-jet fuel and e-diesel, and unconventional fuels like e-hydrogen, e-methanol and e-ammonia
 - water + renewable electricity => e-hydrogen
 - > e-hydrogen + biogenic CO₂ => e-methanol / e-jet fuel / e-diesel
 - > e-hydrogen + nitrogen => e-ammonia
- > Biogenic CO₂: Carbon dioxide from non-fossil and sustainable sources like air and biomass

» Bio-Fuels: Fuels derived from biomass and organic waste via chemical processing, examples of bio-fuels are bio-methanol, bio-methanol, biogas, bio-oil (marine biofuel) etc.


Green vs Blue Hydrogen

Green Hydrogen (e-Hydrogen) is produced through electrolysis, a process of splitting water into hydrogen and oxygen by electricity

Practical consumptions



~50 kWh electricity & ~15 kg water => 1 kg/h hydrogen

Hydrogen (& Derivatives) 101

Blue Hydrogen (clean hydrogen) is produced through mainly steam methane reforming (SMR), a chemical process of splitting methane (natural gas) into hydrogen and carbon dioxide, followed by carbon capture and storage (CCS)

Hydrogen Color Coding

GREEN

Hydrogen produced by electrolysis of water using electricity from renewable resources.

PINK

Hydrogen produced by electrolysis of water using electricity from nuclear Power.

BLUE

Gray or brown hydrogen where some or all of the CO₂ is sequestered or repurposed.

WHITE

Hydrogen produced as a byproduct of industrial processes.

GRAY

Hydrogen produced from natural gas through steam-methane reforming (SMR).

YELLOW

Hydrogen produced by electrolysis of water using grid electricity.

TURQUOISE

Hydrogen produced by the thermal splitting of methane (pyrolysis). Byproduct is solid carbon, not CO₂.

BROWN

Hydrogen extracted from fossil fuels, usually coal, using gasification.

Hydrogen (& Derivatives) 101

CLEAN HYDROGEN is defined based on Carbon Intensity (CI) index, CI<2 kg CO₂ emission / kg H2

Examples of Hydrogen Applications in the US

Power-to-X (PtX)

Hydrogen Gas Properties:

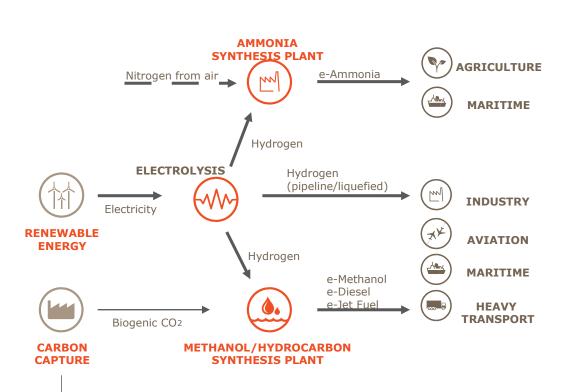
- Low density
- High gravimetric energy density 3 time of Diesel
- Low volumetric energy density - less than 10% of diesel @ 10,000 psi

The Challenge:

Gas storage and transportation

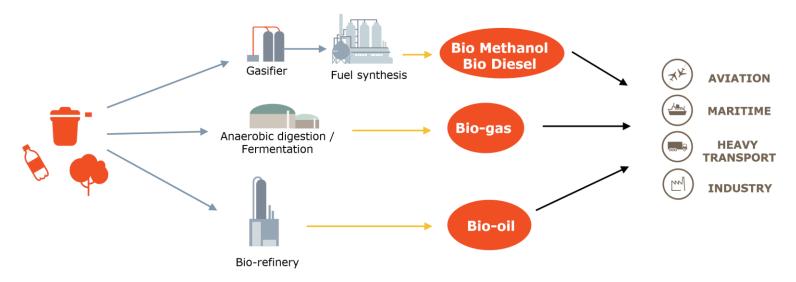
The Solution:

- Conversion to liquid e-fuels
 - diesel, methanol, ammonia, liquid hydrogen



E-Fuels vs Bio-Fuels

e-Fuel Production & Use



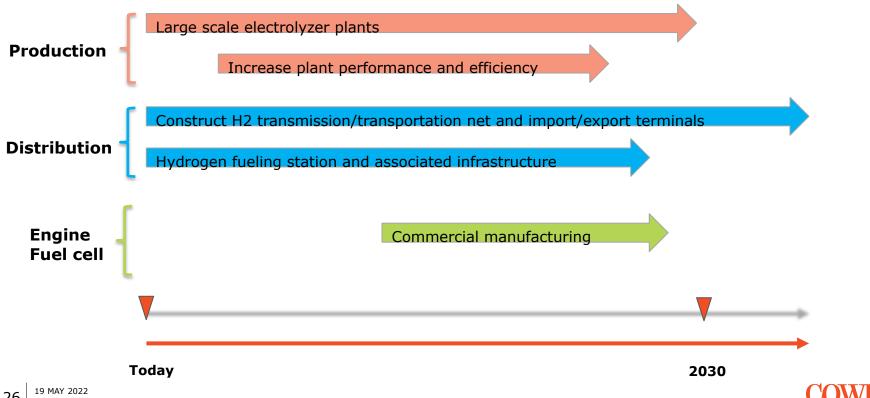
E-Fuels vs Bio-Fuels Bio-Fuel Production & Use

Current Status and Future of Shipping Fuels

- 99.9% of marine fuels are fossil based
- 940 megatons carbon emissions from marine fuels every year

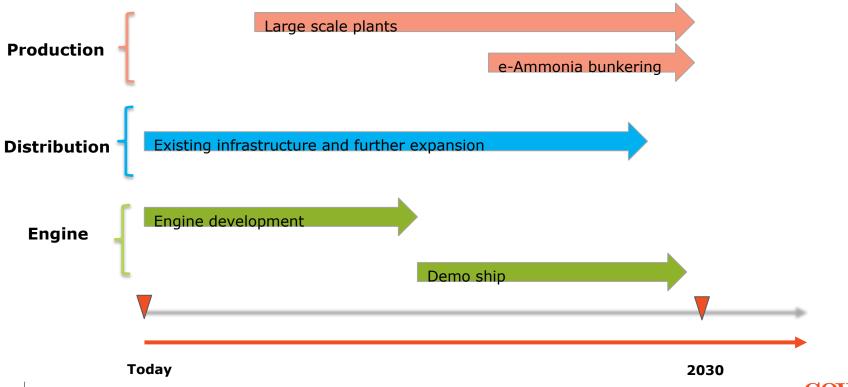
- IMO targets 50% reduction in GHG emissions from international shipping by 2050 compared to 2008
- Total investment needed to decarbonize the shipping industry estimated around \$2 trillion; 85% of which is needed for fuel production and infrastructure

Today



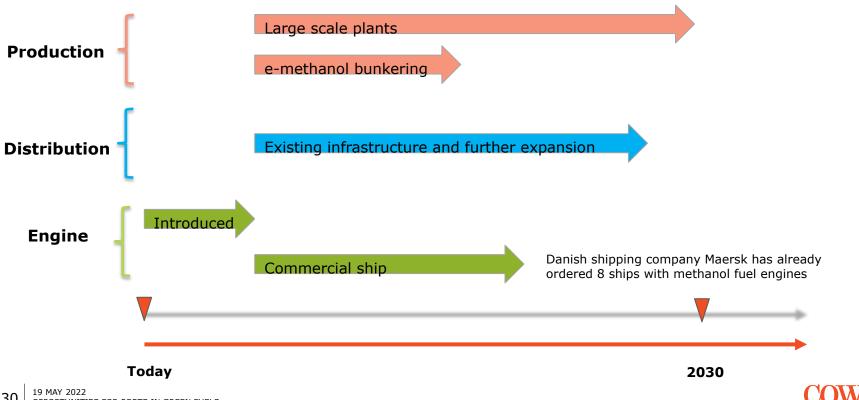
2030

e-Hydrogen Technology Status


COWI

Today 2030

e-Ammonia Technology Status


COW

e-Methanol Technology Status

COW

Shipping Fuels of the Future

Opportunities for Ports

Transformational Change Over Decades

> Renewable Energy Production

- > Offshore Wind Supply Chain Manufacturing
- > Offshore Wind Logistics / Staging Ports
- > Wind, Solar H2 Component Shipping Import & Export

> Green Fuels Terminals

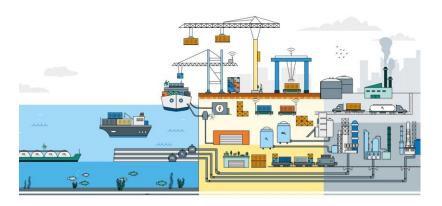
- > Production Hubs
- Storage Facilities
- > Import & Export Terminals

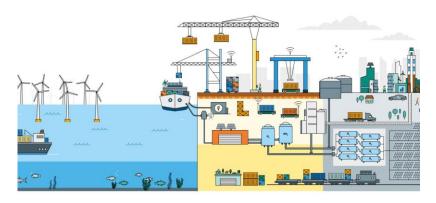
> e-Fuels Bunkering Facilities

Liquid & Gaseous e-Hydrogen Facilities > e-Ammonia and e-Methanol Bunkering Facilities

> Raw Materials Handling Terminals

Unlike fossil fuels, wind & solar require massive infrastructure upfront, then the fuel is free


- > IEA: 6x more specialty materials required to build an electric car vs conventional vehicle
- > IEA: 9x more specialty metals & minerals per MW of capacity for a wind farm vs a natural gas plant
- > IEA: 6x more metals & minerals by 2040 to achieve net-zero goals by 2050
- > In-demand metals and minerals include copper, nickel, manganese, cobalt, chromium, molybdenum, zinc, rare earth metals., lithium, graphite, silicon and others

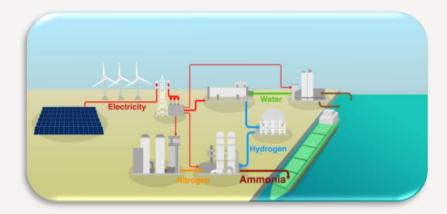

Opportunities for Ports

Blue (clean) Hydrogen/Ammonia e-Ammonia / e-Hydrogen supply chain

supply chain

www.arup.com

19 MAY 2022 OPPORTUNITIES FOR PORTS IN GREEN FUELS


Example Projects

Green Ammonia Export Terminal

Confidential Client & Location, Middle East

- > Solar PV Farm for Green Energy Input
- Electrolysis to Produce Green Hydrogen, then Converted to Green Ammonia for Export

- Export Terminal on Open, Exposed Coastline
- Very Efficient Marine Terminal Infrastructure

Example Projects

e-Methanol Bunker Fuel Infrastructure Confidential Client & Location, Global

- > Renewable Energy Sourcing ~10GW
- > HV Transmission
- > e-Methanol Production
- Marine Terminal for Export
- Multiple Facilities Globally

Driver: EU Sustainability Criteria for e-Fuels

RED II Targets

32% Renewable Energy Consumption by 2030

 At least 32% of energy to come from renewable sources in the EU's gross final consumption of energy by 2030

14% Renewable Energy in Transport by 2030

 Sub-target on the share of renewable energy within the final consumption of energy in the transport sector. Aviation & maritime are not obliged but can contribute.

RED II GHG Savings

70% GHG emissions savings

 E-fuels must have at least 70% GHG emissions savings compared to fossil fuels from a life-cycle perspective

Policies: Global and US Clean/Green/e-Hydrogen

- > Europe, China, South Korea by 2030 (examples)
 - > Germany \$10 billion / China \$20 billion / South Korea \$38 billion
- > The US Bipartisan Infrastructure Law (BIL) provides
 - > \$8 billion for the development of at least four "regional" hydrogen hubs
 - > \$1 billion for the electrolysis technology development
 - > Provides \$20 billion for creating an Office of Clean Energy Demonstrations
- > US DOE Earthshots initiative aims at \$1 for 1kg clean hydrogen in 1 decade ("111")
- The proposed US "Build Back Better" bill

- > Production tax credit of up to \$3/kg H2
- > Extending 30% investment tax credit (ITC) for solar to 2027

