

Humboldt Bay Harbor, Recreation, and Conservation District

moffatt & nichol

Humboldt Redwood Marine Multipurpose Replacement Project

Sediment Investigation and Sediment Management

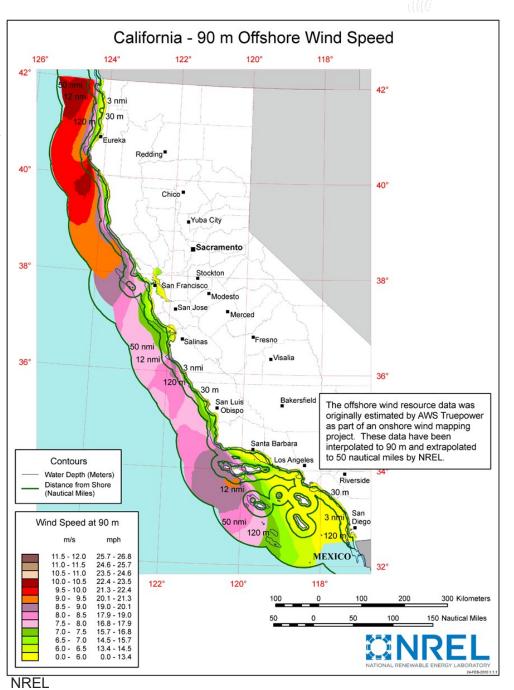
Shelly Anghera, PhD Moffatt & Nichol CMANC May 15, 2025

POSES ONLY

California OSW **Deployment Targets**

Governor Newsom's Letter to CARB (July 2022): >

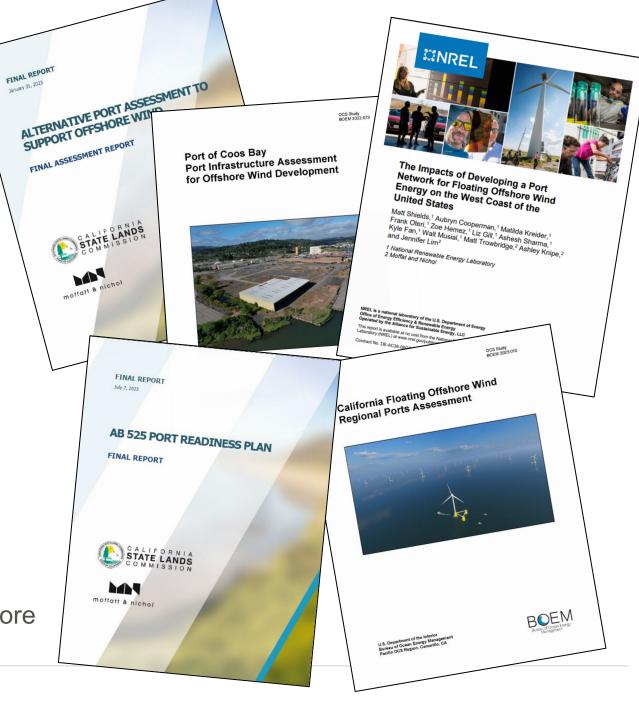
o 20 GW by 2045


CEC Updated AB 525 Report (August 2022):

- 2–5 GW by 2030
- o 25 GW by 2045

25 GW = ~1,250 x 20 MW WTGs

(wind turbine generators)



Principle Power

OSW Port Studies US West Coast

- > Bureau of Ocean Energy Management
 - Port of Coos Bay, Port Infrastructure Assessment for OSW Development, BOEM 2022-073
 - California Floating OSW Regional Ports Assessment, BOEM 2023-010
 - California Floating OSW Regional Ports Feasibility Analysis, 2023
- > National Renewable Energy Laboratory
 - West Coast Port Strategy Study, 2023
- > California State Lands Commission
 - AB 525 Port Readiness Plan, 2023
 - Alternative Port Assessment to Support Offshore

Wind, ,2023

Multi-Port Strategy to Achieve State Offshore Wind Planning Goals

Type of Site	Medium (25 GW)
S&I Sites	3
MF Site (Blade)	2
MF Site (Tower)	1
MF Site (Nacelle Assembly)	1
MF Site (Foundation Assembly)	2
SOV berths for O&M Activities	9 to 16
Mooring Line & Anchor Storage Sites	20 to 40 ac
Electrical Cable Laydown Sites	12 to 22 ac

- Need approximately 10 large port sites (>80 acres) and 10 small port or harbor sites (2-10 acres) to meet CA targets by 2045
- Strategizing the development of manufacturing port sites in California will maximize job creation and economic impact to the State
- California ports and harbors can be ready to support the OSW industry with adequate and timely investments

Multi-Port Strategy to Achieve State Offshore Wind Planning Goals

Type of Site	Medium (25 GW)
S&I Sites	3
MF Site (Blade)	2
MF Site (Tower)	1
MF Site (Nacelle Assembly)	1
MF Site (Foundation Assembly)	2
SOV berths for O&M Activities	9 to 16
Mooring Line & Anchor Storage Sites	20 to 40 ac
Electrical Cable Laydown Sites	12 to 22 ac

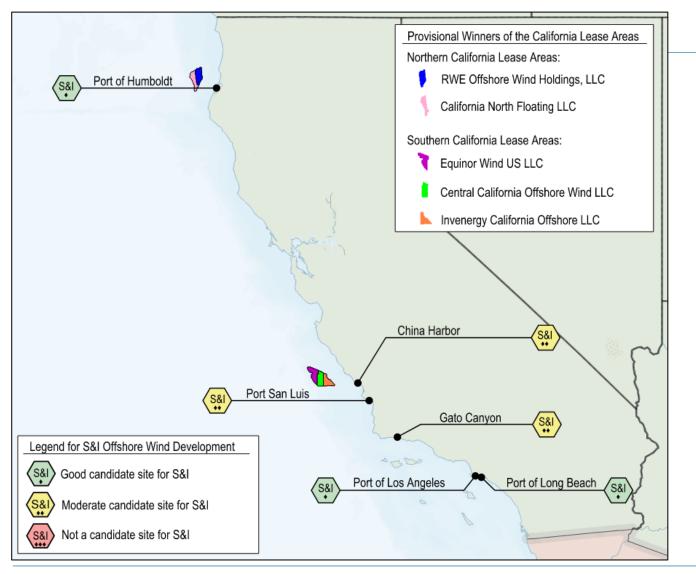
- Need approximately 10 large port sites (>80 acres) and 10 small port or harbor sites (2-10 acres) to meet CA targets by 2045
- Strategizing the development of manufacturing port sites in California will maximize job creation and economic impact to the State
- California ports and harbors can be ready to support the OSW industry with adequate and timely investments

Floating OSW Wharf-side Assembly & Loadout

1) Fabrication

2) Loadout onto semi sub

3) Float off

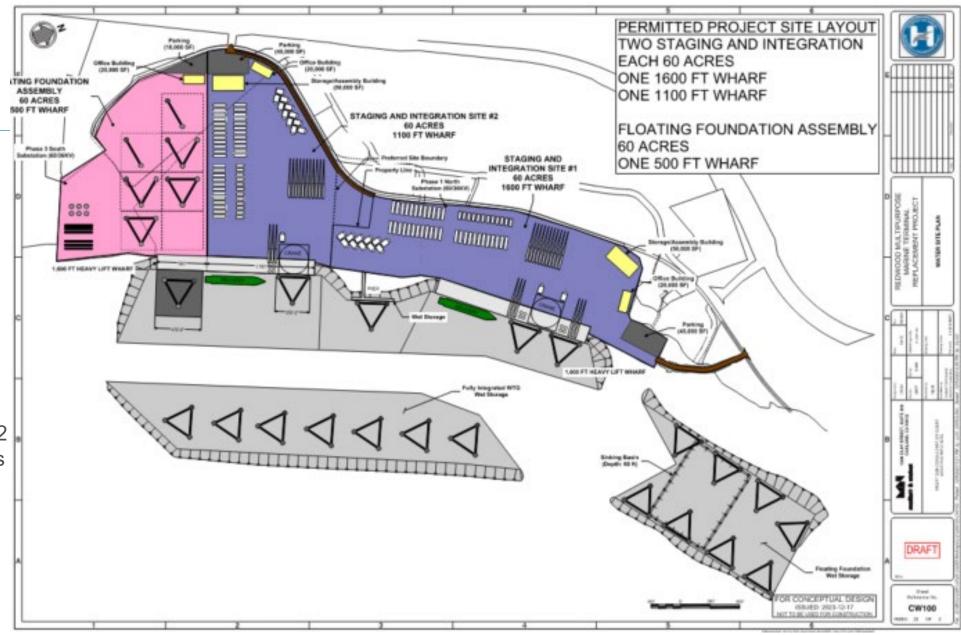

4) WTG Integration

5) Tow to Installation Site

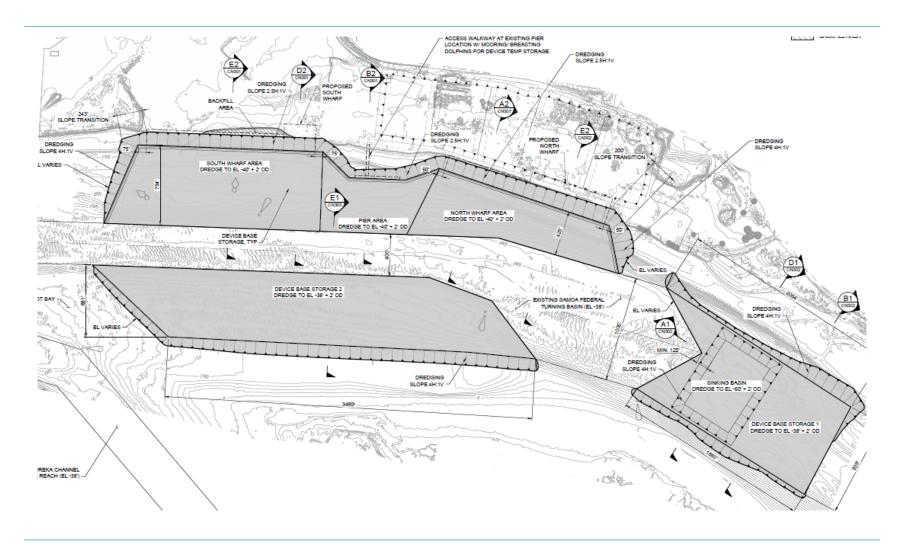
Best CA Port Sites – Staging & Integration

- Construction, Operations, and Maintenance of OSW farms requires Ports:
 - > Sheltered harbor areas
 - > Large laydown areas
 - Deep, navigable water
 - > Heavy load capacity
- Without these type of sites, OSW development is not possible
- Port of Humboldt and Port of Long Beach have announced projects

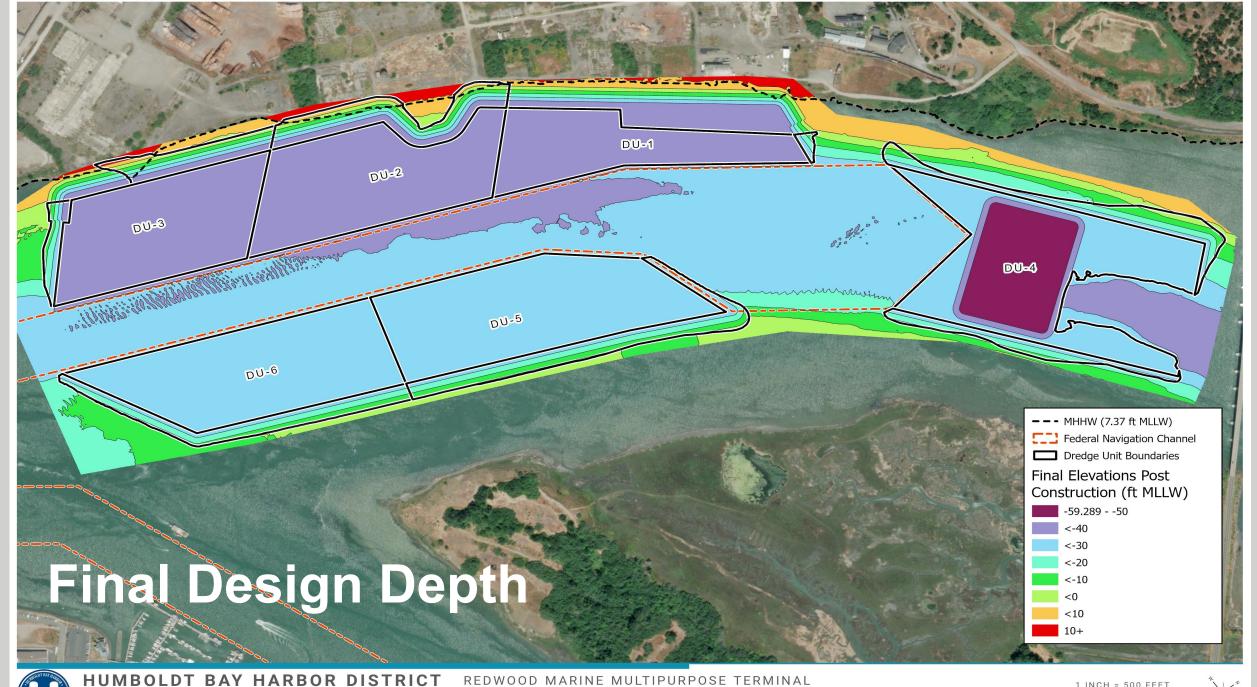
Port of Humboldt Project Location


and Setting

- Samoa Peninsula in Humboldt Bay
- Project site situated in a developed industrial area of the Samoa
 Peninsula where timber processing, pulp mills, and other timberrelated industrial operations historically occurred



Humboldt Redwood Marine Multipurpose Replacement Project - Background


- Redevelop a marine terminal on approximately 180-acre site at the Port of Humboldt Bay
- Project will provide new multipurpose, heavy-lift marine terminal facility to support offshore wind industry
- Can be designed to create 2 staging and integration sites

15% Dredge Design

- Design depths
- -40 ft depth at wharf
- 2.5H:1V slope at wharf with new rock revetment
- -38 ft depth floating storage area
- -60 ft depth sinking basin
- 4H:1V slope in storage area
- -38 ft depth floating storage area
- > 4H:1V slope in storage area

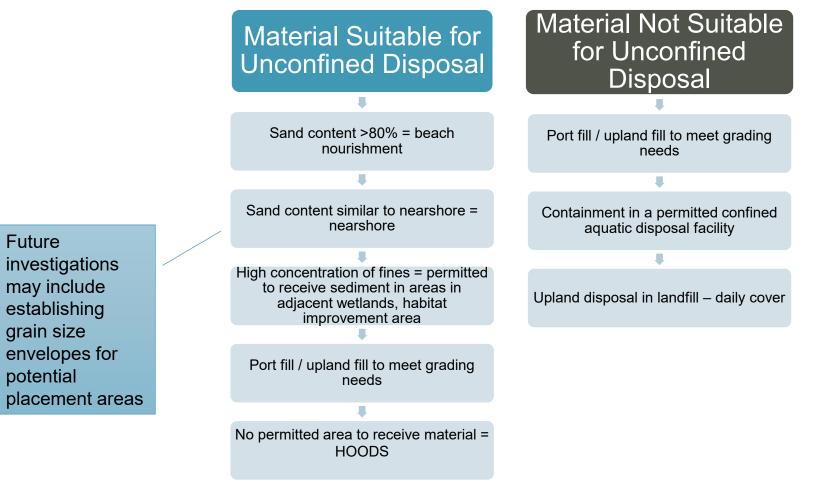
SAMOA, CA

REDWOOD MARINE MULTIPURPOSE TERMINAL

moffatt & nichol 05.02.2025 PROPOSED DREDGE DESIGN

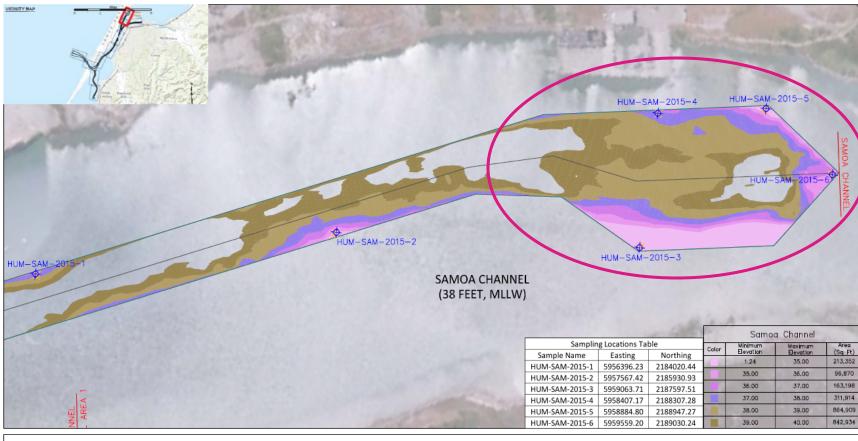
Dredged Material Characterization Areas

- Toral Dredge Volume of 5,641,000 cubic yards (cy)
- > ~1,000,000 cy per dredge unit
- All dredged material characterized for unconfined open water placement (HOODS)
 - This will allow for the broadest of beneficial use applications
 - Will provide the most time for alignment of beneficial reuse options
 - If suitable beneficial use option cannot be found, then the program can proceed with placement at HOODS

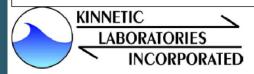

Parameter	Area (acres)	Average Existing Depth (ft MLLW)	Design Dredge Elevation (ft MLLW)	Estimated Cut Quantity to New Project Depth (cy)	Estimated Quantity for 2ft Overdepth(c y)	Total Dredge Volume (cy)
DU-1 (North Wharf)	16.4	-23	-40	409,000	52,000	461,000
DU-2 (Pier)	29.9	-17	-40	1,087,000	76,000	1,163,000
DU-3 (South Wharf)	26.7	-15	-40	1,008,000	70,000	1,078,000
DU-4 (Device Storage	37.8	-33	-38 (Device Storage)	713,000	97,000	810,000
1 & Sinking Basin)		-33	-60 (Sinking Basin)			
DU-5 (Device Storage 2)	34.8	-19	-38	975,000	91,000	1,066,000
DU-6 (Device Storage 2)	31.2	-16	-38	979,000	84,000	1,063,000
Total	173.6	-		5,171,000	470,000	5,641,000

Beneficial Reuse Considerations

- Potential beneficial reuse opportunities for clean materials will be prioritized over ocean disposal when possible
 - > Beach nourishment
 - > Nearshore nourishment
 - Salt marsh/wetland enhancements to be independently permitted, not part of this project description
 - From discussions with others, we have heard there is a need for material to support jetty and discharge pipe repairs near beaches
- Potential beneficial reuse for impacted materials
 - > Upland fill and/or surcharge


Additional Beneficial Reuse Considerations

Anticipated Material Quality


- New dredging, assumed cuts will be made into native material with little to no exposure to anthropogenic pollutants
- Material is likely layered with sand and finer muds
- 9 maintenance dredging evaluations in the last
 20 years all material suitable for unconfined
 open water disposal
- > USACE 2015 maintenance dredging in channel found minimal elevated contaminants – table is summary of all contaminants that were elevated above reference or applicable guidelines
 - > Nickel is naturally elevated in this region

H		Reference Sediments		Ecological Screening ¹	
Valid Analyte Name	Samoa Channel HUM-SAM- 3,4,5 Comp	Historic HOODS (HOODS- REF)	New HOODS (HOODS- NEW)	Salt ERL	Salt ERM
METALS (mg/kg dry)	3, 4 ,5 Comp	KLI)	NEW)		
Chromium		66.2	74.4	81	370
Copper		16.5	19.8	34	270
Lead		6.19	6.85	46.7	218
Mercury		0.0344	0.0446	0.15	0.71
Nickel	87	77.3	90.8	20.9	51.6
Selenium	0.22	0.09	0.12		
Silver	0.0925J	0.0466J	0.0525J	1	3.7
Zinc		57.8	69.4	150	410
PAH's (µg/kg dry)					
Fluorene	28	13J	17	19	540
Total Low Weight PAHs		185	246	552	3160
Total High Weight PAHs	282	67.5	81.2	1700	9600
Total PAHs	637	253	327	4022	44792
OC PESTICIDES					
Total DDT		ND	ND	1.58	46.1
PCB CONGENERS (µg/kg					
Total PCB Congeners		ND	ND	22.7	180
DIOXINS (ng/kg dry)					
Total TEQ	1.35	0.397	0.323		

SOURCE: Drawing prepared from ESRI (World Imagery). HORIZONTAL DATUM: Lambert Conformal Projection, Zone III, NAD 83, California. VERTICAL DATUM: feet, mean lower low water (MLLW).

Vertical Control: RTK Tides From POOR-1 2010 Using VDATUM and GEOID09 Horizontal Control: RTK From POOR-1 2010.

NOTES: 1. Survey performed by the U.S. Army Corps of Engineers in February 2016.

 Soundings were taken by fathometer and are shown to the nearest tenth of a foot.

 3. Project depth is as follows: bbruary Bar & Entrance Channel: -48 feet, MLLW North Bay Channel: -38 feet, MLLW Samoa Channel: -35 feet, MLLW Eureka Outer Channel: -35 feet, MLLW Field's Landing Channel: -26 feet, MLLW Field's Landing Channel: -26 feet, MLLW

LEGEND: Proposed Sample Location

Actual Sample Location Composite Limits

Channel Boundary Centerline

HUMBOLDT BAY SAMPLING LOCATIONS

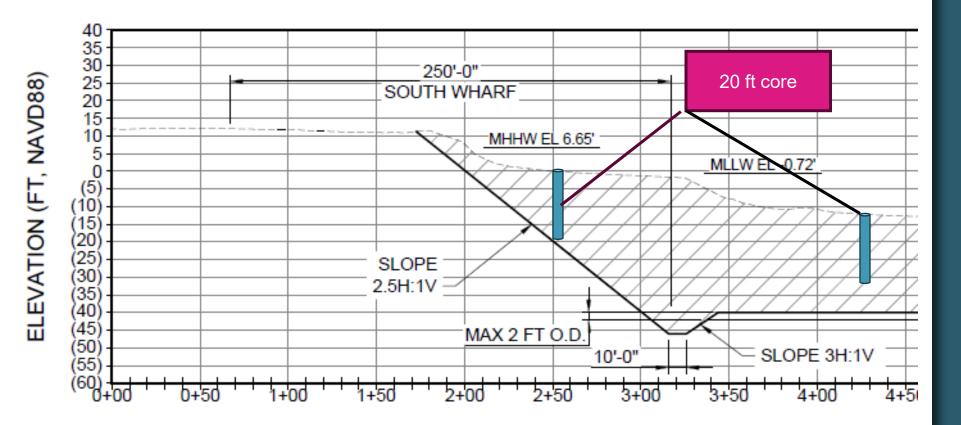
Samoa Channel 2016 Maintenance Dredging U.S. Army Corps of Engineers | San Francisco District

Figure 11

Channel Boundaries

Last Dredge Characterizations

- Samoa Channel and Turning Basin
- Tier III testing conducted in 2015 at 3, 4, 5 composite due to high fine content (~50%)
- > No toxicity observed
- Tissues analyzed for Cr, PAHs, and dioxins
- Concentrations were not significantly different from reference material
- 2021 sampling showed similar grain size and chemistry results, but biological testing was not deemed necessary


⊕

Sampling Considerations

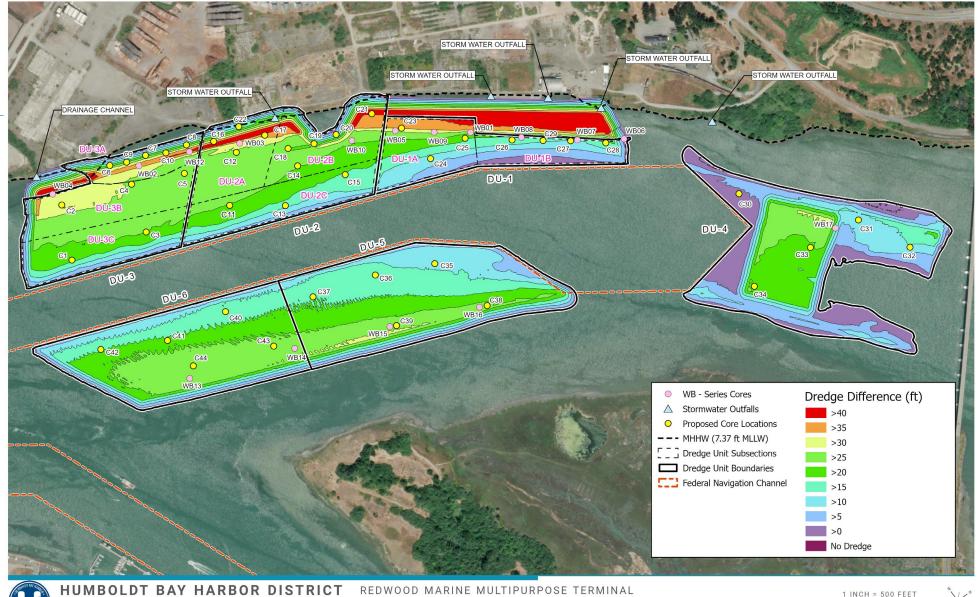
- Maximum depth of core attempt is 20 feet into native material
 - Many cuts are deeper, but want to confirm that deeper uncharacterized material is inferred to be similar to overlying tested layer
 - Borings in support of geotechnical evaluation can provide missing information, if needed
 - Confirmation the geology is similar in deeper unsampled areas
 - Select specific elevations to test for specific analytes to confirm mateiral is similar to overlying material
 - > In addition, collection of z-layer samples
 - Bottom 6 inches of core is achieved and tested if needed

Samling Considerations

- Place cores to allow them to represent the entire cut
- Where not possible, look to align with Geotech borings
- Geotech borings will be needed for wharf design and slope stability in storage area

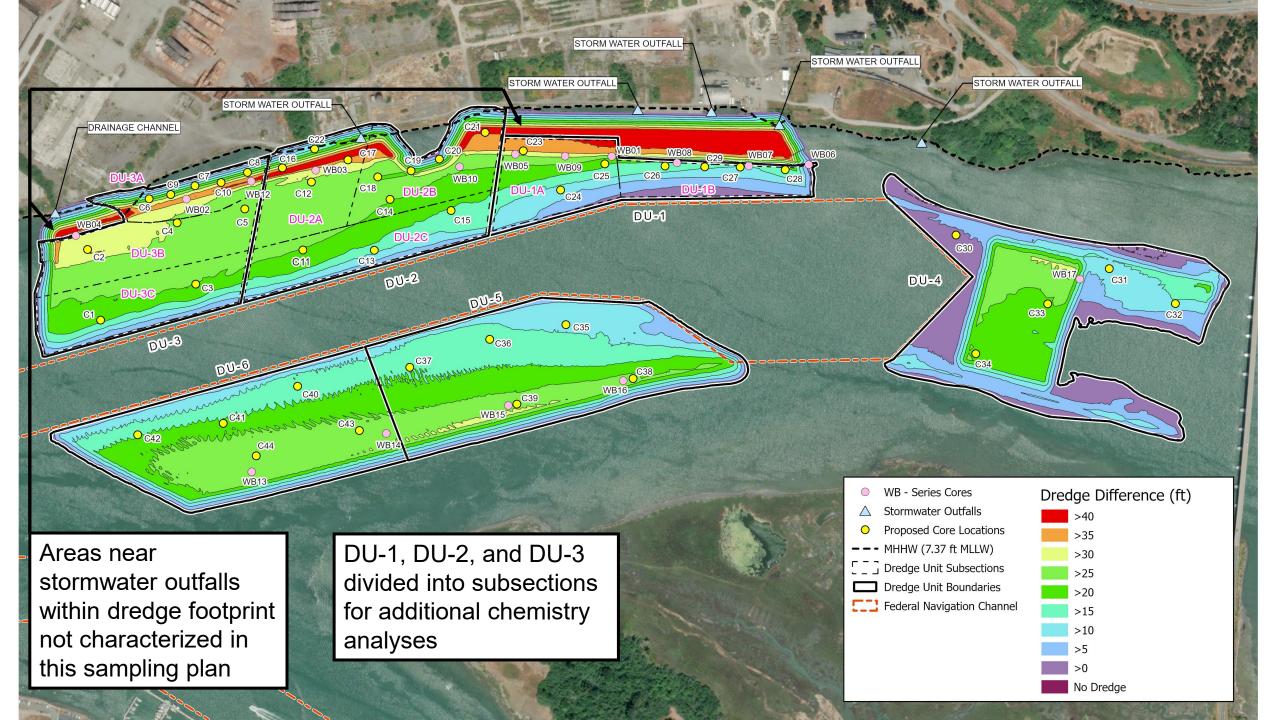
Sampling Approach Updates

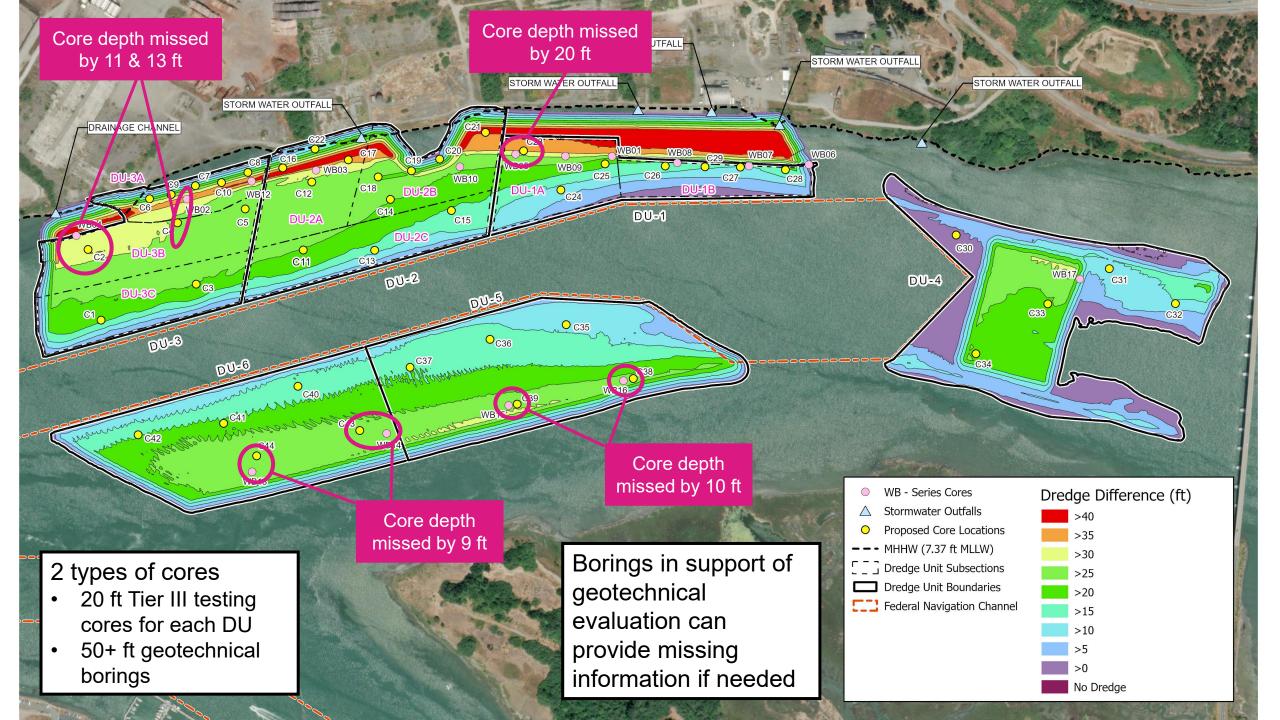
- Sampling approach has been updated many times since SAP initially submitted to agencies with an emphasis on DUs closest to shore
 - > ~15 samples have been added
 - > DU-1, DU-2, and DU-3 has been split into subsections for further chemistry analyses
 - > Areas nearest stormwater outfalls have been removed from the sampling plan and will be further investigated with a later sampling plan
 - > ~600,000 cubic yards will not be characterized in current sampling plan


Sampling Plan

- > 6 Dredge Units
 - > 8 additional subsections
- > 60 Samples
 - > 44 vibracores from
 DUs for ocean
 testing
 - 16 geotechnical borings to be collected in summer to supplement chemical characterization
 - Reference sediment
 will be collected from
 HOODS reference
 site

SAMOA, CA


moffatt & nichol

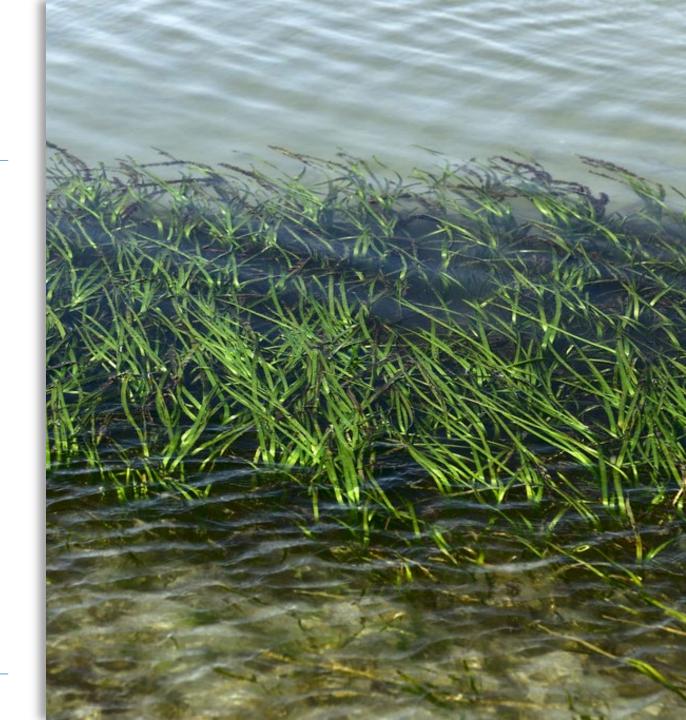

05.02.2025

SEDIMENT CORE LOCATIONS AND CORE LENGTH TO DREDGE DESIGN DEPTH

1.000

Other Sampling Considerations

- Comments received from 7 stakeholders
 - > USEPA
 - > RWQCB
 - > NOAA
 - > CCC
 - > CDFW
 - > CDPH
 - > Waterkeeper
 - > Requests for additional sampling locations (incorporated in previous maps)
 - Requests for additional chemical analyses
 - > Clarification on eelgrass avoidance measures
 - > Clarification on methods to prevent discharge of sediment during sampling
 - > Comments related to water quality concerns related to resuspension of resting algal cysts


Requests for Additional Chemical Analyses

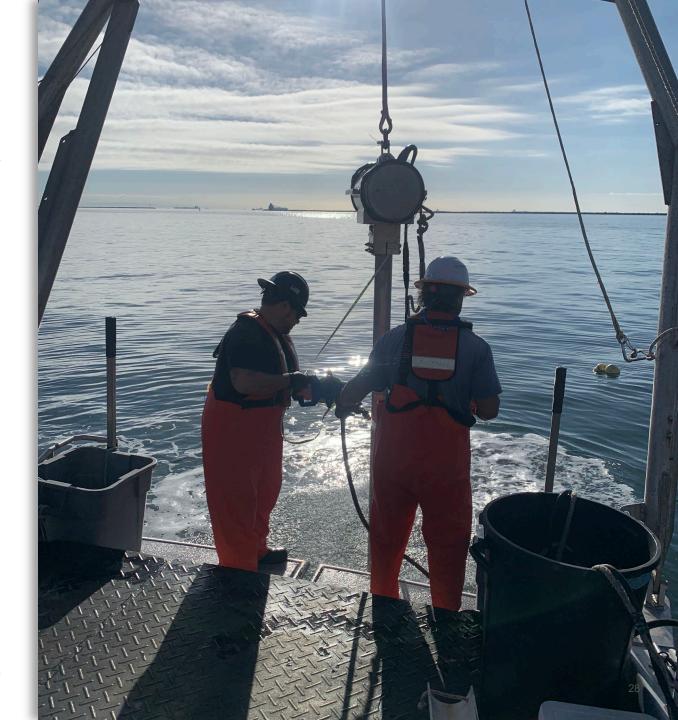
- > Phenols
- > Pyrethroids
- > Chlorinated phenols
 - > 2,3,4,6-Tetrachlorophenol (TCP)
 - > Pentachlorophenol (PCP)
- > z-layer samples in nearshore area analyzed upfront

Eelgrass Avoidance

- Considerations for sampling sites that occur within/near eelgrass habitat
 - > Sampling will occur during high tide
 - Vessel can be position using poles and no anchoring will occur on eelgrass
 - Observations will occur during sampling to avoid eelgrass, and sampling can occur within 50 ft of original location when eelgrass is present

Discharge During Sampling Activities

- All sediment will be retained in a 55gal drum for disposal or sent to the laboratories for analyses
- Sediment will NOT be discharged back into the Bay


Shellfish Growers and HABs

- > Humboldt Bay is the largest shellfish producing bay in California
- CDPH and shellfish growers in the area have expressed concerns about the resuspension of harmful algal blooms (HABs) during dredging
- Team is currently working with growers through the EIR process to address these concerns

Preparing for Field Investigation

- Response to most recent comments submitted in early May
- Waiting on CCC, RWQCB, and USACE sampling permits
- Sampling for both geotechnical boring and sediment quality expected this summer

California Energy Commission: Offshore Wind Energy Waterfront Facility Improvement Program Grant

Catergory II - Offshore Wind Energy Waterfront Facility Improvement Program

Proposed Award						
Rank Number	Project Applicant	Title	CEC Funds Requested	CEC Funds Recommended	Score	Award Status
1	City of Long Beach Harbor Department	Port Offshore Wind Equity and Readiness (POWER)	\$20,000,000	\$20,000,000	90.80	Awardee
2	Recreation, and	The Humboldt Bay Offshore Wind Heavy Lift Marine Terminal - Advanced Design and Public Engagement Project	\$19,926,437	\$18,250,000	87.00	Awardee
3	BlueLift LLC	BlueLift S&I Facility at Port of Los Angeles	\$7,500,000	\$0	72.92	
4	Dort of San Francisco	Pier 94-96 Offshore Wind Site Preparation for Manufacturing & Fabrication	\$9,500,000	\$0	72.43	
		Total Funding Recommended		\$38,250,000		

https://www.energy.ca.gov/sites/default/files/2025-03/GFO-24-701_NOPA_Results_Table_2025-03-07_ada.pdf

Questions

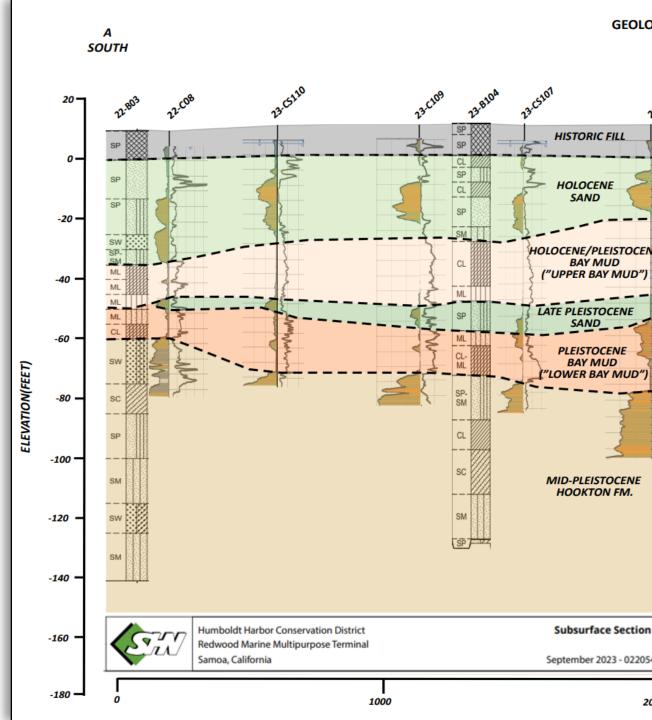
Shelly Anghera, PhD Moffatt & Nichol sanghera@moffattnichol.com 714-296-9017

Additional Slides

Chemical and Biological Testing

- > Sediment chemistry:
 - Total solids, grain size, TOC, TPHs, metals, PAHs, PCB congeners, OC pesticides, organotins, dioxins/furans, phthalates, phenols, VOCs
- > Biological Testing
- > Tissue Chemistry
 - > Lipids
 - Bioaccumulative contaminants found at elevated concentrations, in consultation with USEPA and USF&W

Test Type	Species	Method	End Points			
Suspended Particulate Phase:						
Mysid Shrimp	Mysidopsis bahia	USACE/USEPA 1991, 1998	4-day survival			
Inland silverside fish	Menidia beryllina	USACE/USEPA 1998	4-day survival			
Bivalve larvae	Mytilus galloprovincialis	USACE/USEPA 1998	48 hour			
Solid Phase:						
Amphipod	E. eohastuaius	ASTM E1367– 14, USEPA 1994	10-day survival			
Polychaete	Neanthes arenaceodentata	ASTM E1611- 00(2013)	10-day survival			
Bioaccumulation Phase:						
Clam	Macoma nasuta**	ASTM E1688-00a	28-day survival and			
Polychaete	Nereis virens		bioaccumulation			


Offshore Wind Requires Ports

- > What is needed for Offshore Wind?
 - > Wind Resource
 - > Electrical Grid
 - > Ports and Port Terminals
- Construction, Operations, and Maintenance of OSW farms requires Ports:
 - > Sheltered harbor areas
 - > Large laydown areas
 - > Deep, navigable water
 - > Heavy load capacity
- > There are no existing port terminals on the US West Coast that can currently support OSW
 - > Requires significant investment and development
 - > Requires a multi-port strategy
 - > Adding a new maritime industry without displacing or replacing existing maritime uses

Sampling Approach

- > Larger dredge units for native materials.
- > Deep cuts require fewer samples to provide representation.
- Density of cores similar to other dredge designs for assessment of native materials.
- Material anticipated to homogeneous from a chemical exposure perspective.
- However, there is potential for COPC exposure from stormwater runoff along North Wharf. Therefore, program includes samples along historically industrialized bank to confirm if COPCs are present. In addition, sediment surface (5 ft) archives will be collected.

